Considering the Pandemia of COVID-19 virus, the Advisory Board of UNESCO/UNITWIN Interregional Network on “Biophysics, Biotechnology and Environmental Health Control” organizes weekly skype meetings with the leading scientists of participant universities of the NETWORK on the subject “The mechanism of COVID-19 virus protein spikes interaction with host cell membrane and its age-dependency”. 


The first online meeting was held 20.03.2020.

The names of the participants are listed below.


Prof. Sinerik Ayrapetyan - Coordinator of UNESCO/UNITWIN Network and UNESCO Chair in Life Sciences (Armenia, Yerevan)

Dr. Vahagn Poghosyan - Union of Advanced Technology Enterprises (Armenia, Yerevan)

Prof. Andrey Rubin - Head of Biophysics Department of Lomonosov Moscow State University (Russia, Moscow)

Prof. Oleg Krishtal - Director of Bogomoletz Institute of Physiology (Ukraine, Kiev)

Prof. Anatoly Goltsev - Coordinator of UNESCO Chair– Institute for Problems of Cryobiology and Cryomedicine of NAS of Ukraine (Ukraine, Kharkov)  

Prof. David Nadareishvili - Director of Ivane Beritashvili Center of Experimental Biomedicine (Georgia, Tbilisi)  

Ali A. Moosavi-Movahedi - Coordinator of UNESCO Chair on Interdisciplinary Research in Diabets – University of Tehran (Iran, Tehran)

Prof. Hamod Mobasheri - Head of Laboratory of Membrane Biophysics and Macromolecules (LMBM), Institute of Biochemistry and Biophysics (IBB) University of Tehran (Iran, Tehran)

Prof. Majid Ghayour-Mobarhan -  Mashhad University of Medical Sciences (Iran, Mashhad)

Prof. Suleyman Dasdag - Department of Biophysics, Istanbul Medeniyet University (Turkey, Istanbul)

Prof. Ehsan A. Khan - Jamia Hamdard University (India, Delhi)

Prof. Kusal Das - Head of Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M.Patil Medical College BLDE SHRI B M Patil Medical College Hospital & Research Center (India, Karnataka)

Prof. Rob Ewing - Head of Biological Sciences, University of Southampton (UK, Southampton)

Prof. Robert Walker - Professor Emeritus at University of Southampton (UK, Southampton)

Prof. David Carpenter - Director of Institute for Health and the Environment, University at Albany (USA, Albany)


Below are the short summaries of the possible perspectives to face COVID-19 challenges suggested by the participant scientists (the outcome of the first skype meeting dated 20.03.2020)

Dr. Alberto Foletti  - “Some biophysical perspectives on the COVID-19 health challenge.”

Clinical Biophysics International Research Group, Lugano, Switzerland.
Institute of Translational Pharmacology, National Research Council-C.N.R., Rome, Italy.


Prof. Kusal K.Das "Mechanism of action of SARS-COV2 in host cell"

Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri
B.M.Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka, India
Vice President - The Physiological Society of India


Prof. Reza Yousefi - "The exogenous human recombinant ACE2 has therapeutic potential against covid-19"
Protein Chemistry Laboratory, Department of Biology, Shiraz University, Shiraz, Iran


Based on the discussions, the meeting participants outlined the main discussion outcome and the platform for the Second Meeting



The Second Meeting was held 27.03.2020, 2pm Armenian time 


Based on the effective outcome of the first meeting, UNESCO General Office thanked UNESCO/UNITWIN Network in Biophysics in Armenia for starting this chain of discussion as a very valuable step for the product of scientific know-how on virological research in particular and in life science research in general.

Dr. Fahmi Ahmed - the Cheif of Section, from Division of Science Policy and Capacity Building, Natural Science Sector emphasized the importance to  introduce other UNESCO chairs, Directors of UNESCO centres in Life sciences, and UNESCO network of scientits involved in the UNESCO Carlos Finlay Prize in Microbiology as well as members from the International Basic Science Programme, and partners. 

Following his recommendations the NETWORK has engaged more scientists in the skype meeting from the above-mentioned institutions. 

The idea was also to strengthen or increase University research and education (MSc, PhD programmes etc), around the world, so we can have better trained virologist, bacteriologists, or microbiologists, in general. Or creating or strengthening links between scientists and medics, whether this is between the basic scientists working on structure biology for example, or those involved in drug discovery and the health research system etc.

As UNESCO also has an MoU with the WHO, the skype meeting would help to develop a comprehensive picture of not only the public health side but buildng capacities in scientific research and know-how.


The Main Platform for Discussion for the Second Skype Meeting “Fighting against COVID-19" initiated by "UNESCO/UNITWIN“  Interregional Research and Postgraduate Educational Network in Biophysics, Biotechnology and Environmental Health is as follows:


Currently, the detailed intracellular mechanism of COVID-19 virus infection is not evaluated yet. Therefore, the real way to stop the infection is to inhibit virus penetration through the membrane into cell.

Traditionally, it is suggested that Coronavirus attaches to specific cellular receptors via the spike protein, triggers a conformational change in spike which then mediates fusion between the viral and cell membranes which results in the release of the nucleo-capsid into the cell. This statement is not in agreement with modern membranological approaches based on the following reasons: 

a) the virus in cell membrane cannot have a specific receptor because of existence of a great number of viruses. 

b) the explanation that the virus enters into cell by spike protein-induced receptor is also not real, as such a confirmation predicts the change of cell membrane conductance, which can be stopped by ionic gradient changes on the membrane.

The 2012 Nobel Prize for chemistry was awarded to Robert Lefkowitz and Brian Kobilka for their work on G protein-coupled receptors, the activation of which leads to modulation of intracellular messenger systems. By our study it has been shown that intracellular cyclic nucleotides-dependent Na/Ca exchange has quantum-mechanical sensitivity and by generation of water efflux from the cells controls low permeability for Na ions i.e. by these mechanisms  the cell contacts to any foreign substances which could depress the semipermeable properties of cell membrane, which is a common consequences of any cell pathology. We have shown that cGMP-dependent F Na/Ca exchange is the primary mechanism through which cell protects its low permeability for Na ions, pushes Ca ions from the cells, activates Na/K pump and by water efflux from the cell inhibits Na inward current, brings to cell shrinkage  by surface-dependent decrease of ionic channels and receptors and decreases membrane fluidity. Therefore, the virus could penetrate only by depressing cGMP-dependent FNa/Ca exchange.  Although the Na/Ca exchange functions in stoichiometry of 3Na:1Ca, its activation in forward mode has dehydration effect on cell hydration, by activating Na/K pump in young animals, while in old animals, because of high [Ca]i, it has hydration effect because of water influx and increase of membrane fluidity promot virus penetration into cells. Therefore, the factors having stimulation effect on cGMP-dependent activation F Na/Ca exchange from the cells could increase cell resistance to virus infection.